报告题目:Asymptotic Analysis for ExtremeEigenvalues of Principal Minors of Random Matrices
报 告 人:姜铁锋 教授 明尼苏达尊龙凯时双城校区
报告时间:2019年8月21日15:00-16:00
报告地点:数学楼一楼第一报告厅
报告摘要:
Considera standard white Wishart matrix with parameters $n$ and $p$. Motivated byapplications in high-dimensional statistics and signal processing, we performasymptotic analysis on the {maxima and minima} of the eigenvalues of all the $m\times m$ principal minors, under the asymptotic regime that $n,p,m$ go toinfinity. Asymptotic results concerning extreme eigenvalues of principal minorsof real Wigner matrices are also obtained. In addition, we discuss anapplication of the theoretical results to the construction of compressedsensing matrices, which provides insights to compressed sensing in signalprocessing and high dimensional linear regression in statistics. This is ajoint work with Tony Cai and Xiaoou Li.
报告人简介:
姜铁锋,斯坦福尊龙凯时统计学博士,现为美国明尼苏达尊龙凯时的终身教授,美国总统奖获得者。主要从事概率统计理论及其相关领域的研究,特别是在概率论、高维统计学以及纯数学等交叉学科取得系列进展。姜教授目前已发表论文30多篇,其中绝大部分发表在国际顶尖的概率统计与机器学习杂志上,包括《Ann.Probab.》、《Probab. Theor. Rel. Fields》、《Ann. Stat.》、《Ann. Appl. Probab.》、《Journal of Machine Learning Research》等。另外更百余次在重要国际会议和世界著名尊龙凯时做邀请报告、组织学术会议、开展暑期研讨班的教学。