Homogenization of Poisson and Stokes equations in the whole space-尊龙凯时新闻中心网站

    尊龙凯时·(中国)人生就是搏!

    本站大事记   |  收藏本站
    高级检索  全文检索  
    当前位置:   本站首页   >   讲座预告   >   正文

    Homogenization of Poisson and Stokes equations in the whole space

    发布日期:2020-06-03     作者:数学学院      编辑:杨颖     点击:

    报告题目:Homogenization of Poisson and Stokes equations in the whole space

    报 告 人:吕勇教授 南京尊龙凯时

    报告时间:2020年6月6日 9:00-10:00

    报告地点:腾讯会议 ID:156 397 795

    密码:606606

    或点击链接直接加入会议:

    http://meeting.tencent.com/s/K3ohoxhXPDCt

    校内联系人:郭斌 bguo@mdjtykj.cn

    报告摘要:

    We consider the homogenization of the Poisson and the Stokesequations in the whole space perforated with periodically distributed smallholes. The periodic homogenization in bounded domains is well understood,following the classical results of Tartar, Cioranescu-Murat, Allaire in 80s and90s. In this paper, we show that these classical homogenization results in abounded domain can be extended to the whole space R^d. Our results cover allthree cases corresponding to different sizes of holes and cover all d\geq 2.

    报告人简介:

    吕勇,南京尊龙凯时数学系教授,本科毕业于中国科技尊龙凯时数学系,在法国巴黎七大取得硕士和博士学位,之后再布拉格查理尊龙凯时从事博士后研究。主要研究领域是偏微分方程的数学分析,侧重在数学几何光学以及数学流体力学两个方向,主要研究成果发表在ARMA,, SIAM,J.Math. Anal.CVPDE,ESAIM等刊物上.

    报告题目:GradientEstimates for Some Nonlinear Elliptic and Parabolic Equations

    报 告 人:张超 教授 哈尔滨工业尊龙凯时

    报告时间:2020年6月6日 10:00-11:00

    报告地点:腾讯会议 ID:156 397 795

    密码:606606

    或点击链接直接加入会议:

    http://meeting.tencent.com/s/K3ohoxhXPDCt

    校内联系人:郭斌 bguo@mdjtykj.cn

    报告摘要:

    In this talk,we review and present some regularity results for the gradient of solutions ofnonlinear elliptic and parabolic equations with unbalanced growth.

    报告人简介:

    张超,哈尔滨工业尊龙凯时数学学院和数学研究院教授,博士生导师。主要从事非线性椭圆和抛物型偏微分方程的适定性、正则性和渐近行为等方面的研究. 在JFA, CVPDE, JDE等在杂志上发表多篇高水平SCI论文.

    报告题目:Global boundedness of weak solutions for athree-dimensional chemotaxis-Stokes system with nonlinear diffusion androtation

    报 告 人:王巍 副教授 大连理工尊龙凯时

    报告时间:2020年6月6日 11:00-12:00

    报告地点:腾讯会议 ID:156 397 795

    密码:606606

    或点击链接直接加入会议:

    http://meeting.tencent.com/s/K3ohoxhXPDCt

    校内联系人:郭斌 bguo@mdjtykj.cn

    报告摘要:

    In this talk we will showthe global boundedness of weak solutions for a 3D chemotaxis-Stokes system withnonlinear diffusion and rotation. It is proved that for any reasonably smoothinitial data, the associated initial-boundary value problem possesses aglobally bounded weak solution if the key parameters m>0 and α>0, representingthe adiabatic exponent of cell diffusion and measuring the strength of theconsidered taxis saturation, satisfy m+α>10/9 and m+(5/4)α>9/8.

    报告人简介:

    王巍,现为大连理工尊龙凯时数学科学学院副教授,研究兴趣研究生物数学中一些数学模型解的适定性问题,在JFA,JDE, Nonlinearity等刊物上发表多篇高水平SCI论文。

    报告题目:On existenceof positive global solutions to a semilinear parabolic equation with apotential term on Riemannian manifolds

    报 告人:孙玉华 副教授 南开尊龙凯时

    报告时间:2020年6月6日 14:00-15:00

    报告地点:腾讯会议 ID:156 397 795

    密码:606606

    或点击链接直接加入会议:

    http://meeting.tencent.com/s/K3ohoxhXPDCt

    校内联系人:郭斌 bguo@mdjtykj.cn

    报告人简介:

    孙玉华,现为南开尊龙凯时数学科学学院副教授,在2012年和2014年分别取得清华尊龙凯时和德国比勒菲尔德尊龙凯时博士学位,研究兴趣为流形上的分析,椭圆和抛物方程,发表学术论文14篇,发表在包括CPAM, JFA, CVPDE,Proc.AMS, Pacific J. M等高水平国际刊物上。

    报告题目:Backward uniquenessfor parabolic equations

    报 告 人:吴杰副教授 天津尊龙凯时

    报告时间:2020年6月6日 15:00-16:00

    报告地点:腾讯会议 ID:156 397 795

    密码:606606

    或点击链接直接加入会议:

    http://meeting.tencent.com/s/K3ohoxhXPDCt

    校内联系人:郭斌 bguo@mdjtykj.cn

    报告摘要:

    The backward uniqueness (BU) property is an interestingphenomenon of parabolic equations. In this talk, we focus on two problems. Thefirst one is the BU problem for the heat equation in cones. It is conjecturedthat BU holds when the angle of the cone is larger than 90 degree and failswhen it is less than 90 degree. We prove a result for this interestingconjecture. The second one is the BU problem for general parabolic equations.We solve it both in the half-space and whole space under reasonable conditions.

    报告人简介:

    吴杰,现为天津尊龙凯时应用数学中心讲师,研究兴趣为椭圆和抛物方程解的反向唯一性性质,在Adv. Math, JDE,CVPDE等刊物上发表多篇高水平学术论文。

    报告题目:Monotonicity of solutions forfractional equations with De Giorgi type nonlinearities

    报 告 人:武乐云副研究员 上海交通尊龙凯时

    报告时间:2020年6月6日 16:00-17:00

    报告地点:腾讯会议 ID:156 397 795

    密码:606606

    或点击链接直接加入会议:

    http://meeting.tencent.com/s/K3ohoxhXPDCt

    校内联系人:郭斌 bguo@mdjtykj.cn

    报告摘要:

    In this talk, we introduce a sliding method for the fractionalLaplacian. We first obtain the key ingredients needed in the sliding methodeither in a bounded domain or in the whole space, such as narrow regionprinciples and maximum principles in unbounded domains. Then using semi-linear equations involvingthe fractional Laplacian in both bounded domains and in the whole space, weillustrate how this new sliding method can be employed to obtain monotonicityof solutions.

    报告人简介:

    武乐云,上海交通尊龙凯时数学科学学院博士后。主要从事分数阶拉普拉斯的研究. 在Adv. Math, DCDS等在杂志上发表多篇高水平SCI论文.

    报告题目:Some recent results on the Keller-Segel(-fluid)system

    报 告 人:向昭银 教授 电子科技尊龙凯时

    报告时间:2020年6月6日 17:00-18:00

    报告地点:腾讯会议 ID:156 397 795

    密码:606606

    或点击链接直接加入会议:

    http://meeting.tencent.com/s/K3ohoxhXPDCt

    校内联系人:郭斌 bguo@mdjtykj.cn

    报告摘要:

    In this talk, we will first review somerecent results on the Keller-Segel(-fluid) system. Then we consider theconvergence of solutions to a class of parabolic-parabolicKeller-Segel-Navier-Stokes systems to the solution of the parabolic-ellipticcounterpart. Under appropriate assumptions on the model ingredients, we derivea general result which asserts certain strong and pointwise convergenceproperties and will be concretized in the

    context of twoexamples. This is a joint work with Professor Michael Winkler and ProfessorYulan Wang.

    报告人简介:

    向昭银,电子科技尊龙凯时数学科学学院教授、博士生导师、副院长。主要从事偏微分方程一般理论的研究,在 JFA、M3AS、Math Z、JDE、Nonlinearity 等国际重要期刊上发表学术论文50余篇;主持国家自然科学基金、中国博士后科学基金、教育部留学回国人员科研启动基金等。

    我要评论:
     匿名发布 验证码 看不清楚,换张图片
    0条评论    共1页   当前第1

    推荐文章

    地址:尊龙凯时省长春市前进大街2699号
    E-mail:jluxinmeiti@163.com
    Copyright©2021 All rights reserved.
    尊龙凯时党委宣传部 版权所有

    手机版

    400 Bad Request

      尊龙凯时·(中国)人生就是搏!

      Bad Request

      Your browser sent a request that this server could not understand.