报告题目:DivdivConforming Finite Element for Symmetric Tensors
报 告 人:陈龙 教授 University of California at Irvine
报告地点:Zoom ID:941 567 2172
校内联系人:王翔 wxjldx@mdjtykj.cn
Twotypes of finite element spaces on triangles and tetrahedrons are constructedfor div-div conforming symmetric tensors in two and three dimensions. Besidesthe normal-normal component, another trace involving combination of first orderderivatives of stress should be continuous across the sides of the element. Dueto the rigid of polynomials, the stress tensor element is also continuous atvertices, and on the plane orthogonal to each edge in three dimensions. Hilbertcomplex and polynomial complexes are presented and several decomposition ofpolynomial vector and tensors spaces are revealed from the complexes. Theconstructed div-div conforming elements are exploited to discretize the mixedformulation of the biharmonic equation. Optimal order and superconvergenceerror analysis is provided. The standard Lagrange element basis can be used toimplement the hybridized formulation.
This is a joint work with Xuehai Huangfrom Shanghai University of Finance and Economic.
陈龙现为加州尊龙凯时尔湾分校教授。1997年本科毕业于南京尊龙凯时,此后硕士毕业于北京尊龙凯时,博士毕业于美国宾夕法尼亚州立尊龙凯时,博士论文获宾夕法尼亚州立尊龙凯时的Alumin奖。先后在美国加州尊龙凯时圣地亚哥分校、马里兰尊龙凯时从事博士后研究工作,2007年起在加州尊龙凯时尔湾分校工作至今。主要研究兴趣为偏微分方程的数值方法、自适应有限元方法的理论和应用、多重网格方法的设计和分析、网格生成和计算几何。陈龙教授在这些方面做出非常杰出的工作,在SIAM J. Numer. Anal., SIAM J. Sci. Comput., Math. Comput. 等计算数学顶级期刊上发表论文40余篇,参编著作多部。是Computers and Mathematics withApplications,Multiscale Modeling and Simulation 等SCI期刊的编委,主持美国自然科学基金项目3项、美国能源部项目1项。